Resources for Data Science Job Seekers

February 12, 2018 | Sadavath Sharma — Analyst

Getting your first job in data science can be a full-time job all on its own. Simply finding a job post worth applying to can be a chaotic pursuit (though we’ve tried to make that part easier with the Mode Analytics Data Jobs Board (edited). Once you’ve found a job posting that looks like it could be a fit, you need to make sure you stand out from the crowd of other applicants.

As a data science job applicant, there are two stages to your search. First, you need to get an interview. To do that, you need documentation that you can fill the role. This is where your resume, your portfolio, and (unfortunately) your online presence come in. There are serious issues with looking up candidates on search engines, which range from creating unconscious bias to opening up murky legal situations, but it happens (not here at Mode though). For better or worse, it’s worth taking a quick look at your name’s search results to get a sense for what people might find.

Read more

Thinking in SQL vs Thinking in Python

July 7, 2016 | Benn Stancil — Chief Analyst at Mode

Over the years, I’ve used a variety of languages and tools to analyze data. As I think back on my time using each tool, I’ve come to realize that each encourages a different mental framework for solving analytical problems. Being conscious of these frameworks—and the behaviors they promote—can be just as important as mastering the technical features of a new language or tool.

I was first introduced to data analysis about ten years ago as a college student (my time studying the backs of baseball cards notwithstanding). In school, and later as a economics researcher, I worked almost exclusively in two tools—Excel and R—which both worked well with CSVs or Excel files downloaded from government data portals or academic sources.

Read more